Phys 410
Fall 2015
Lecture #26 Summary
1 December, 2015

We continued the discussion of nonlinear mechanics, focusing on the periodically driven
damped pendulum. The driven damped pendulum has an equation of motion for the generalized
coordinate ¢ given by ¢ + 2B¢ + w§ sin @ = ywj cos wt, where g is the familiar damping
frequency, wZ = g/ is the natural oscillation frequency of the pendulum, and y = F,/mg is the
dimensionless ratio of the sinusoidal forcing amplitude to the weight of the bob.

As the driving strength (parameterized by y) is increased, there are solutions at sub-
harmonics of the drive frequency. In other words, we have to wait for multiples of the drive
period before the motion of the pendulum repeated itself. Note that this is different from
harmonic generation, such as the third harmonic response discussed in the last lecture. As y is
increased there is a series of period doubling bifurcations, at ever decreasing intervals of y. This
sequence of bifurcations is described by the Feigenbaum number. This leads to the prediction of
chaos (motion with period infinity) at a finite driving strength. This transition is observed in the
solution for ¢(t).

An excellent way to distinguish periodic and chaotic systems is in terms of their sensitivity to
initial conditions. Periodic systems (including those at subharmonics) have an insensitivity to
initial conditions in the long-time behavior is dictated by the driving force alone, and identical
for all initial conditions. Chaotic systems on the other hand have extreme sensitivity to initial
conditions. Even very small differences in their initial state of motion become exponentially
larger as time evolves, and eventually it is impossible to predict the state of one solution relative
to another started with different initial conditions. These observations are summarized by the
Lyapunov exponent (4) for the growth (or decay) of the difference between two solutions
(Ap(t)) as Ap(t)~Ke?t, where K > 0. Periodic systems have A < 0, while chaotic systems
have 1 > 0.

We then discussed several methods to summarize the motion in terms of diagrams and plots.
The first is a bifurcation diagram, which shows a stroboscopic sampling of the solutions ¢(t)
and reveals periodic and chaotic motion pictorially. The next is the state space plot where the
solution is plotted in the ¢(t), ¢(t) plane with time as the parameter. This also reveals the
periodic and chaotic motions quite distinctly. Finally we considered the Poincare section which
IS a stroboscopic sampling of the state space trajectory.

The bifurcation diagram summarizes the types of motion that are observed under different
normalized driving strength y. The long-time behavior of the pendulum angle #t) is sampled
stroboscopically and plotted on the diagram. The stroboscope period corresponds to the drive
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period. The regions of period 1, period 2, period 4, and chaotic motion are clearly visible. One
surprising result is that periodic motion can be seen in narrow windows of y in the middle of
chaotic solutions. Another surprise is that periodic motion can re-appear at larger driving
strength, along with other bouts of period doubling and chaos.

We examined the solutions represented as trajectories in a two-dimensional state space
described by (¢, ) as a parametric function of time. These trajectories go on to limit cycle
curves for the periodic solutions, and form space-filling curves for chaotic solutions. The
running trajectories in which the pendulum winds continuously are hard to represent on
bifurcation diagrams and state-space plots. In this case it becomes useful to make Poincare
sections that consist of stroboscopically sampled points from state space. These create fractal
structures for chaotic solutions.

Finally we discussed some physical realizations of period doubling in diode circuits,
neural activity and heat flow through a fluid. There is a direct analogy between the driven
damped pendulum and the driven Josephson junction. Certain crystals of high temperature
superconductors have an intrinsic Josephson effect between superconducting layers, and such
systems act as collections of coupled driven damped pendula, and display an amazing variety of
physical phenomena.

We then turned to a discussion of Special Relativity. We began by reviewing the Galilean
transformation between inertial reference frames, and showed that Newton’s second law of
motion holds in the same form in all inertial reference frames. This result relies on the Galilean
velocity addition formula between reference frames. However, it was discovered that Galilean
invariance does not apply to Maxwell’s equations (which are actually Lorentz invariant) by
examining the measurement of the speed of light in a moving reference frame. The Michelson-
Morley experiment showed that the measured speed of light is the same in all directions for all
inertial observers. Hence there must be something more going on than simple Galilean
transformations between reference frames.

Einstein made two postulates:

1) If S is an inertial reference frame and if a second frame S’ moves with constant
velocity relative to S, then S’ is also an inertial reference frame.

2) The speed of light (in vacuum) has the same value c in every direction in all inertial
reference frames.

The first postulate points out that there is no “special” reference frame which is
absolutely at rest and somehow ‘better’ than any other reference frame. It also implies that all
the laws of physics (including Maxwell’s equations) should take on the same form in all inertial
reference frames. Again it says that there is no single inertial reference frame in which the laws
of physics are simpler, or have fewer terms, than any other reference frame. The trick will be



finding how to transform all of the coordinates from one inertial reference frame to another to
preserve the form of the laws of physics. The second postulate codifies the results of the
Michelson-Morley experiment, and leads to many non-intuitive results.

We examined the relativity of time by considering two reference frames, one with
railroad tracks at rest (S), and the other (S”) on a train moving down the tracks at a high rate of
speed (V). Consider a light-clock on the train (frame S’) that sends a brief flash of light from the
floor to the ceiling, where it bounces off of a mirror, and then back to a detector that is co-
located with the source on the floor. The time interval for the round trip of the light beam is
At' = 2h/c, where h is the height of the train and c is the speed of light, as measured in S’. An
observer (or really a set of observers) in S see the light follow a triangular trajectory as the train
wizzes by. From the geometry of the experiment, and the second postulate, those observers

attribute a time interval for the “round trip” of At = yAt’, wherey =1/\/1—-p%,and g =V/
c. Since y > 1 the two observers do not agree on how much time elapsed on the light-clock!
This shows that the Galilean idea of universal time for all inertial observers is incorrect. In
addition, because y diverges as V — c, it says that there is a speed limit for inertial reference
frames: V < c¢. (This also means that we cannot address the question of what the world looks
like from the reference frame of a photon travelling at the speed of light, at least with this
formalism.)

The first postulate implies the equality of all inertial reference frames, so why is the result
At = yAt' asymmetric between the two inertial reference frames? The difference arises because
the time interval was measured at a single fixed location in S* while it was measured at two
distinct locations in S. The measurement of a time interval at a fixed location in an inertial
reference frame is called the “proper time interval’ and is denoted At,. Measurements of these
two events taken from any other inertial reference frame moving with respect to this one will
result in a dilated time interval measurement At = yAt,.



